Kernel-Based Association Test
نویسندگان
چکیده
منابع مشابه
Kernel-based association test.
Association mapping (i.e., linkage disequilibrium mapping) is a powerful tool for positional cloning of disease genes. We propose a kernel-based association test (KBAT), which is a composite function of "P-values of single-locus association tests" and "kernel weights related to intermarker distances and/or linkage disequilibria." The KBAT is a general form of some current test statistics. This ...
متن کاملFFBSKAT: Fast Family-Based Sequence Kernel Association Test
The kernel machine-based regression is an efficient approach to region-based association analysis aimed at identification of rare genetic variants. However, this method is computationally complex. The running time of kernel-based association analysis becomes especially long for samples with genetic (sub) structures, thus increasing the need to develop new and effective methods, algorithms, and ...
متن کاملAssociation Test Based on SNP Set: Logistic Kernel Machine Based Test vs. Principal Component Analysis
GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features. In this article, we compare the l...
متن کاملA Permutation-Based Kernel Conditional Independence Test
Determining conditional independence (CI) relationships between random variables is a challenging but important task for problems such as Bayesian network learning and causal discovery. We propose a new kernel CI test that uses a single, learned permutation to convert the CI test problem into an easier two-sample test problem. The learned permutation leaves the joint distribution unchanged if a...
متن کاملRare-variant association testing for sequencing data with the sequence kernel association test.
Sequencing studies are increasingly being conducted to identify rare variants associated with complex traits. The limited power of classical single-marker association analysis for rare variants poses a central challenge in such studies. We propose the sequence kernel association test (SKAT), a supervised, flexible, computationally efficient regression method to test for association between gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetics
سال: 2008
ISSN: 1943-2631
DOI: 10.1534/genetics.107.084616